Check for updates

Blood 142 (2023) 3480-3481

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

704.CELLULAR IMMUNOTHERAPIES: EARLY PHASE AND INVESTIGATIONAL THERAPIES

CAR T-Cell Therapy in Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Retrospective Study

Liping Zhao¹, Qi Zhou², Chen Chen², Zhuojun Ling³, Kai Wang³, Fan Wu³, Jinlong Xu³, Jiajia Duan³, Zelin Wang³, Quangang Wang³, Jing PAN, MDPhD³

¹ State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China

²Gobroad Research Center, Beijing, China

³Beijing GoBroad Boren Hospital, Beijing, China

Background

Patients with relapsed or refractory T cell acute lymphoblastic leukemia/lymphoma (r/r T-ALL/LBL) often have limited treatment options available and poor prognoses. Clinical trials of autologous CD7, donor-derived CD7 and donor-derived CD5 CAR T-cell therapy in r/r T-ALL/LBL conducted in our center have showed encouraging efficacy and a shaky safety. To evaluate the safety and efficacy of the three therapies, we conducted a retrospective study and analyzed the results of the clinical trials across three different CAR T-cell therapies.

Methods

This is a retrospective comparative analysis of CAR T-cell therapies with different targets and sources in r/r T-ALL/LBL, including a phase I trial of autologous CD7 CAR T-cell therapy (NCT04840875), a phase I trial (ChiCTR2000034762) and a phase II trial (NCT04689659) of donor-derived CD7 CAR T-cell therapy, and a phase I trial of donor-derived CD5 CAR T-cell therapy (NCT05032599). Adverse events and pharmacokinetics were not collected after patients received stem-cell transplantation. In univariate analysis, Chi-square test and Fisher's exact test were used to compare categorical outcome; in multivariate analysis, linear regression was used for the continuous outcome and Logistic regression was used for the categorical outcome.

Results

A total of 102 patients were included in this analysis, consisting three cohorts: 20 patients receiving autologous CD7 CAR T cells, 66 with donor-derived CD7 CAR T-cell therapy, and 16 receiving donor-derived CD5 CAR T cells.

Although with comparable complete remission rates, patients in the three cohorts had different adverse events. Especially, patients who received autologous CD7 CAR T-cell therapy had a significant lower severe infection rate than those with donor-derived CD7 CAR T cells (odds ratio [OR], 0.06; 95% confidence interval [95%CI], 0.01 to 1.03; P=0.019 by exact method) and donor-derived CD5 CAR T cells (OR, 0.03; 95%CI, 0.01 to 0.60; P=0.006) (Table 1). Despite that all patients developed grade 3-4 cytopenias, more patients who received autologous CD7 CAR T-cell therapy reverted grade 3-4 cytopenias to grade 2 or lower within one month compared with donor-derived CD7 CAR T cells (OR, 13.00; 95%CI, 3.99 to 42.32; P<0.001) and donor-derived CD5 CAR T cells (OR, 27.86; 95%CI, 3.02 to 257.28; P<0.001).

Based on the multivariate analyses, CD7 CAR T-cell therapy led to lower severe infection rate compared with CD5 CAR T-cell therapy (OR, 0.08; 95%CI, 0 to 0.56; P=0.015) (Table 2), and it should be noted that in this study, the vector uesd in autologous and donor-derived CD7 CAR T-cell therapy was different from that in CD5 CAR T-cell therapy; larger proportion of patients treated with CAR T cells manufactured from their own T cells retured all grade 3-4 cytopenias to grade 0-2 within one month (OR, 68.08; 95%CI, 3.21 to 1446.20; P=0.005), versus patients receiving donor-derived therapy. No factors were identified as independently influencing CRS, ICANS and CR/CRi rate at one month, including central nervous system leukemia not associated with ICANS. Although the source of CAR T cells has not been shown to be a factor in CRS and ICANS, patients with autologous CAR T-cell therapy had lower peak levels of cytokines than donor-derived, including IL-6, sCD25 and TNF- α with the maximal P value of 0.02 in multivariate analysis.

Conclusion

Despite the risk of tumor contamination and CAR T-cell manufacture failure in autologous CD7 CAR T-cell therapy, some clinical experience have emerged against for them recently. In addition to the fact that autologous therapy cause no GVHD

POSTER ABSTRACTS

Session 704

and the faster recovery from hematologic toxicity, being beneficial for long-term defense against infection, it produces lower levels of several cytokines in vivo compared to donor-derived therapy, providing a guarantee for lower incidence of CRS and ICANS. Hence, given the comparable remission rate and remarkable safety, autologous CD7 CAR T-cell therapy would be prioritized for recommendation for r/r T-ALL/LBL patients with low tumor load and access to collect enough normal T cells from their own body for CAR T-cell manufacture. CD5 CAR T-cell therapy is regarded as an option for patients with CD5 positive encountering treatment failure or relapse after CD7 CAR T-cell therapy.

Disclosures No relevant conflicts of interest to declare.

Table 1. Safety* and efficacy according to different CAR T-cell therapies

	Auto CD7 (n=20)	Donor CD7 (n=66)	Donor CD5 (n=16)	P value
CR/CRi at one month, No.(%)	17 (85)	53 (80)	16 (100)	0.148
Severe infection ^a , No.(%)	0 (0)	19 (29)	7 (44)	0.002
CRS, No.(%)				
0-2	18 (90)	59 (89)	16 (100)	0.515
3-4	2 (10)	7 (11)	0 (0)	
ICANS, No.(%)	1 (5)	6 (9)	2 (13)	0.485
Grade 3-4 cytopenia within 30 days, No.(%)	20 (100)	66 (100)	16 (100)	1
Cytopenia recovery ^b , No.(%)	13 (65)	8 (12)	1 (6)	0.001

* CRS and ICANS were graded according to the 2019 ASTCT consensus. Other AEs were graded according to CTCAE, Version 5.0.

a refers to grade 3 to 5 infection.

^b indicates that all grade 3-4 cytopenias recover to grade 2 or lower within 30 days post CAR T-cell infusion.

Auto, autologous; CR, complete remission, CRi, complete remission with with incomplete hematologic recovery, CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; donor, donor-derived.

Table 2. Logistics regression examining factors associated with safety and efficacy

	CR/CRi at one month		Severe infection		CRS		ICANS		Cytopenia recovery ^d	
	OR	95%CI	OR	95%CI	OR	95%CI	OR	95%CI	OR	95%CI
T-cell source *	1.47	0.12-26.17	0.08*	0-0.56	0.80	0.02-22.17	0.89	0.02-46.73	68.08*	3.21-1446.20
CAR	0.09	0.77-infinity	1.27	0.27-5.52	0.39	0-2.44	2.01	0.29-13.77	0.44	0.04-4.92
Tumor load in BM										
<5	ref		ref		ref		ref		ref	
≥5, <25	2.10	0.23-105.19	0.72	0.15-3.03	4.78	0.66-44.24	6.28	0.74-53.63	1.95	0.40-9.56
≥25	0.43	0.09-2.07	0.24	0.04-1.08	0.70	0.01-12.17	3.29	0.55-19.60	0.07	0.01-1.14
Prior SCT	2.01	0.28-13.48	1.66	0.36-9.82	0.11	0.01-1.55	0.69	0.08-5.81	5.46	0.40-74.26
Previous lines of therapy			1							
1-2	ref		ref		ref		ref		ref	
3-4	0.52	0.07-3.88	0.78	0.11-5.03	4.11	0.23-82.79	8.92	0.38-208.84	0.59	0.07-5.13
5-10	0.47	0.03-9.28	1.08	0.12-9.03	7.87	0.07-433.70	26.84	0.70-1026.58	0.51	0.04-7.32
Infusion dose ^b										
Underdose	ref		ref		ref		ref		ref	
Dose 1	0.72	0.01-19.55	1.53	0.01-166.59	2.59	0.27-infinity	5.62	0.13-246.56	0.46	0.05-4.65
Dose 2	0.99	0.01-32.20	0.52	0.01-49.01	0.43	0.04-infinity	1.27	0.03-50.27	3.26	0.20-52.97
EMDs	0.25	0.04-1.15	1.65	0.49-6.04	1.03	0.17-7.02	6.15	0.78-48.53	0.85	0.20-3.52
Grade ≥3 cytopenias ^e			0.92	0.25-3.92	2.25	0.21-36.46	0.39	0.06-2.61	0.46	0.11-1.88
CNSL							5.74	0.78-42.01		

* indicates the corresponding P value less than 0.05.

a indicates whether the T cells used for CAR T-cell manufacture were collected from the patients themselves or healthy donors.

b in this analysis, patients were divided into three groups according to infusion dose, including Dose 1: $5 \times 10^5 (\pm 30\%)$ /kg, Dose 2: $1 \times 10^6 (\pm 30\%)$ /kg, Underdose: $<3.5 \times 10^5$ /kg.

c cytopenia status was measured before lymphodepletion.

d indicate that all grade 3-4 cytopenias recover to grade 2 or lower within 30 days post CAR T-cell infusion.

BM, bone marrow; CR, complete remission, CRi, complete remission with with incomplete hematologic recovery, CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; OR, odds ratio; CI, confidence interval; EMDs, extramedullary diseases; CNSL, central nervous system leukemia.

Figure 1

https://doi.org/10.1182/blood-2023-182538